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TRACKING, AND SENSOR
INTEGRATION

G. V. Trunk

Naval Research Laboratory

8.1 INTRODUCTION

Since the invention of radar, radar operators have detected and tracked targets
by using visual inputs from a variety of displays. Although operators can perform
these tasks very accurately, they are easily saturated and quickly become fa-
tigued. Various studies have shown that operators can manually track only a few
targets. To correct this situation, automatic detection and tracking (ADT) sys-
tems were attached to many radars. As digital processing increases in speed and
hardware decreases in cost and size, ADT systems will become associated with
almost all but the simplest radars.

In this chapter, automatic detection, automatic tracking, and sensor integra-
tion systems for air surveillance radar will be discussed. Included in this discus-
sion are various noncoherent integrators that provide target enhancement,
thresholding techniques for reducing false alarms and target suppression, and al-
gorithms for estimating target position and resolving targets. Then, an overview
of the entire tracking system is given, followed by a discussion of its various com-
ponents such as tracking filter, maneuver-following logic, track initiation, and
correlation logic. Next, multiscan approaches to automatic tracking such as max-
imum likelihood are discussed. Finally, the chapter concludes with a discussion
of sensor integration and radar netting, including both colocated and multisite
systems.

8.2 AUTOMATIC DETECTION

The statistical framework necessary for the development of automatic detection
was applied to radar in the 1940s by Marcum,! and later Swerling? extended the
work to fluctuating targets. They investigated many of the statistical problems
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associated with the noncoherent detection of targets in Rayleigh noise. (Nnote: If
the quadrature components are gaussian-distributed, the envelope is Rayleigh-
distributed and the power is exponentially distributed.) Marcum’s most important
result was the generation of curves of probability of detection (Pp) versus signal-
to-noise ratio (S/N) for a detector which sums N envelope-detected samples (ei-
ther linear or square-law) under the assumption of equal signal amplitudes. How-
ever, in a search radar, as the beam sweeps over the target, the returned signal
amplitude is modulated by the antenna pattern. Many authors investigated vari-
ous detectors (weightings), comparing detection performance and angular estima-
tion results with optimal values; and many of these results are presented later in
this section.

In the original work on detectors, the environment was assumed known and
homogeneous, so that fixed thresholds could be used. However, a realistic envi-
ronment (e.g., containing land, sea, and rain) will cause an exorbitant number of
false alarms for a fixed-threshold system that does not utilize excellent coherent
processing. Three main approaches, adaptive thresholding, nonparametric detec-
tors, and clutter maps, have been used to solve the false-alarm problem. Both
adaptive thresholding and nonparametric detectors are based on the assumption
that homogeneity exists in a small region about the range cell that is being tested.
The adaptive thresholding method assumes that the noise density is known ex-
cept for a few unknown parameters (e.g., the mean and the variance). The sur-
rounding reference cells are then used to estimate the unknown parameters, and
a threshold based on the estimated density is obtained. Nonparametric detectors
obtain a constant false-alarm rate (CFAR) by ranking the test samples (ordering
the samples from smallest to largest), usually with the reference cells. Under the
hypothesis that all the samples (test and reference) are independent samples from
an unknown density function, the test sample has a uniform density function,
and, consequently, a threshold which yields CFAR can be set. Clutter maps store
an average background level for each range-azimuth cell. A target is then de-
clared in a range-azimuth cell if the new value exceeds the average background
level by a specified amount.

Optimal Detector. The radar detection problem is a binary hypothesis-
testing problem in which H, denotes the hypothesis that no target is present
and H, is the hypothesis that the target is present. While several criteria (i.e.,
definitions of optimality) can be used to solve this problem, the most
appropriate for radar is the Neyman-Pearson.® This criterion maximizes the
probability of detection P, for a given probability of false alarm P, by
comparing the likelihood ratio L [defined by Eq. (8.1)] to an appropriate
threshold T which determines the P,. A target is declared present if

X15..., XalHy)
L(xl,...,x,,) 11,77;1’—,)‘"'}101; =T 8.1

where p(x,, ..., x,|H,) and p(x, ..., x,|H,) are the joint probability density func-
tions of the n samples x; under the conditions of target presence and target ab-
sence, respectively. For a linear envelope detector the samples have a Rayleigh
density under H, and a ricean density under H,, and the likelihood ratio detector
reduces to

n A :
I1 10(—’:> =T 8.2)
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where I, is the Bessel function of zero order, o? is the noise power, and A, is the
target amplitude of the ith pulse and is proportional to the antenna power pattern.
For small signals (A; <¢ s), the detector reduces to the square-law detector

n
ZA,?x,? =T @®.3)
&

and for large signals (4; >$ s), it reduces to the linear detector

n

=

For constant signal amplitude (i.e., A; = A) these detectors were first studied by
Marcum! and were studied in succeeding years by numerous other people. De-
tection curves for both linear and square-law detectors are given in Chap. 2. The
most important facts concerning these detectors are the following:

¢ The detection performances of the linear and square-law detectors are similar,
differing only by less than 0.2 dB over wide ranges of Py, P,, and n.

¢ Since the signal return of a scanning radar is modulated by the antenna pattern,
to maximize the S/N when integrating a large number of pulses with no weight-
ing (i.e., A; = 1) only 0.84 of the pulses between the half-power points should
be integrated, and the antenna beam-shape factor (ABSF) is 1.6 dB.* The
ABSEF is the number by which the midbeam S/N must be reduced so that the
detection curves generated for equal signal amplitudes can be used for the scan-
ning radar.

¢ The collapsing loss for the linear detector can be several decibels greater than
the loss for a square-law detector’ (see Fig. 8.1). The collapsing loss is the ad-
ditional signal required to maintain the same P, and P;, when unwanted noise
samples along with the desired signal-plus-noise samples are integrated. The
number of signal samples integrated is N, the number of extraneous noise sam-
ples integrated is M, and the collapsing ratio p = (N + M)/N.

Most automatic detectors are required not only to detect targets but to make
angular estimates of the azimuth position of the target. Swerling® calculated the
standard deviation of the optimal estimate by using the Cramer-Rao lower
bound. The results are shown in Fig. 8.2, where a normalized standard devia-
tion is plotted against the midbeam S/N. This result holds for a moderate or
large number of pulses integrated, and the optimal estimate involves finding the
location where the correlation of the returned signal and the derivative of the
antenna pattern is zero. Although this estimate is rarely implemented, its per-
formance is approached by simple estimates.

Practical Detectors. Many different detectors (often called integrators) are
used to accumulate the radar returns as a radar sweeps by a target. A few of
the most common detectors’ are shown in Fig. 8.3. Though they are shown in
the figure as being constructed with shift registers, they would normally be
implemented with random-access memory. The input to these detectors can be
linear, square-law, or log video. Since linear is probably the most commonly
used, the advantages and disadvantages of the various detectors will be stated
for this video.
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FIG. 8.1 Collapsing loss versus collapsing ratio for a probability of false alarm of 107 and a
probability of detection of 0.5. (Copyright 1972, IEEE; from Ref. 5.)
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FIG. 8.2 Comparison of angular estimates with the Cramer-Rao lower bound. ¢ is the
standard deviation of the estimation error, and N is the number of pulses within the 3-dB
beamwidth, which is v. The S/N is the value at the center of the beam. (Copyright 1956,
IEEE; after Ref. 6.)

Moving Window. The moving window in Fig. 8.3a performs a running sum
of n pulses in each range cell;

S; =81 + X~ Xip (8.5
where §; is the sum at the ith pulse of the last n pulses and x; is the ith pulse. The
performance® of this detector for n = 10 is only 0.5 dB worse than the optimal
detector given by Eq. (8.3). The detection performance can be obtained by using
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FIG. 8.3 Block diagrams of various detectors. The letter C indi-
cates a comparison, t is a delay, and loops indicate feedback.
(From Ref. 7.)

an ABSF of 1.6 dB and the detection curves in Chap. 2. The angular estimate that
is obtained by either taking the maximum value of the running sum or taking the
midpoint between the first and last crossings of the detection threshold has a bias
of n/2 pulses, which is easily corrected. The standard deviation of the estimation
error of both estimators is about 20 percent higher than the optimal estimate
specified by Cramer-Rao bound. A disadvantage of this detector is that it is sus-
ceptible to interference; that is, one large sample from interference can cause a
detection. This problem can be minimized by using limiting. A minor disadvan-
tage is that the last n pulses for each range cell must be saved, resulting in a large
storage requirement when a large number of pulses are integrated. However, be-
cause of the availability of large memories of reduced size and cost, this is a mi-
nor problem.

The detection performance discussed previously is based on the assumption
that the target is centered in the moving window. In the real situation the radar
scans over the target, and decisions which are highly correlated are made at
every pulse. Hansen® analyzed this situation for N = 2, 4, 8, and 16 pulses and
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FIG. 8.4 Single-sweep false-alarm probability Py, versus threshold for moving window.
The noise is Rayleigh-distributed with o = 1. (Copyright 1970, IEEE; after Ref. 9.)

calculated the detection thresholds shown in Fig. 8.4, the detection performance
shown in Fig. 8.5, and the angular accuracy shown in Fig. 8.6. Comparing
Hansen’s scanning calculation with the single-point calculation, one concludes
that 1 dB of improvement is obtained by making a decision at every pulse. The
angular error of the beam-splitting procedure is about 20 percent greater than the
optimal estimate. For large signal-to-noise ratios, the accuracy (rms error) of the
beam-splitting and maximum-return procedures will be limited by the pulse
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FIG. 8.5 Detection performance of the analog moving-window detector for the
no-fading case. (Copyright 1970, IEEE; after Ref. 9.)
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FIG. 8.6 Angular accuracy obtained with beam-splitting estimation procedure
for the no-fading case. Broken-line curves are lower bounds derived by
Swerling,’ and points shown are simulation results. (Copyright 1970, IEEE; af-
ter Ref. 9.)
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spacing'® and will approach

o) = A/V12 (8.6)

where A6 is the angular rotation between transmitted pulses. Consequently, if the
number of pulses per beamwidth is small, the angular accuracy will be poor. For
instance, if pulses are separated by 0.5 beamwidth, o(§) is bounded by 0.14
beamwidth. However, improved accuracy can be obtained by using the ampli-
tudes of the radar returns. An accurate estimate of the target angle is given by

e
é = (-)l + 2 + 2aA91n(A2/A1) (87)

where

a = 1.386/(beamwidth)? 8.8

and A, and A, are the two largest amplitudes of the returned samples and occur
at angles 6, and 8, = 0, + A6 respectively. Since the estimate should lie between
0, and 0, and Eq. (8.7) will not always yield such an estimate, § should be set
equal to 8, if § < u, and 6 should be set equal to 8, if § > u,. The accuracy of this
estimator is given in Fig. 8.7 for the case of n = 2 pulses per beamwidth. This
estimation procedure can also be used to estimate the elevation angle of a target
in multibeam systems where 8, and 8, are the elevation-pointing angles of adja-
cent beams.
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FIG. 8.7 Angular accuracy using two-pulse estimates.

Feedback Integrator. The amount of storage required can be reduced signif-
icantly by using a feedback integrator shown in Fig. 8.3b:

S,’ = KSk—l + X (89)

For a feedback value of K, the effective number of pulses integrated M is M = 1/
(1 — K), and for optimal (maximum P,) performance M = 0.63 N, where N is
the number of pulses between the 3-dB antenna beamwidth.!! The detection per-
formance is given by the detection curves for M pulses with ABSF = 1.6 dB. Al-
though the feedback integrator applies an exponential weighting into the past, its
detection performance is only 1 dB less than that of the optimal integrator.® Un-
fortunately, difficulties are encountered when using the feedback integrator to es-
timate the azimuth position.!! The threshold-crossing procedure yields estimates
only 20 percent greater than the lower bound, but the bias is a function of S/N
and must be estimated. On the other hand, the maximum value, though it has a
constant bias, has estimates that are 100 percent greater than the lower bound.
Furthermore, the exponential weighting function essentially destroys the radar
antenna sidelobes. Because of these problems, the feedback integrator has lim-
ited utility.

Two-Pole Filter. The two-pole filter in Fig. 8.3¢ requires the storage of an
intermediate calculation in addition to the integrated output and is described
mathematically by
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yi = x; — kaziy 8.10
and Z;i = Yi-1 t k]Z,'-] (811)

where x; is the input, y, is the intermediate calculation, z; is the output, and k, and
k, are the two feedback values. The values'*'* which maximize P, are given by

ky = 2 exp (=to/V 1 — &) cos (w) 8.12)
and ky = exp (—26wa/V1 - &) 8.13)

where § = 0.63, No, v = 2.2, and N is the number of pulses between the 3-dB
points of the antenna. With this rather simple device a weighting pattern sim-
ilar to the antenna pattern can be obtained. The detection performance is
within 0.15 dB of the optimal detector, and its angular estimates are about 20
percent greater than the Cramer-Rao lower bound. If the desired number of
pulses integrated is changed (e.g., because of a change in the antenna rotation
rate of the radar), it is only necessary to change the feedback values k; and k,.
The problems with this detector are that (1) it has rather high detector
sidelobes, 15 to 20 dB, and (2) it is extremely sensitive to interference (i.e.,
the filter has a high gain resulting in a large output for a single sample that has
a high value).

Binary Integrator. The binary integrator is also known as the dual-threshold
detector, M-out-of-N detector, or rank detector (see ‘‘Nonparametric Detectors’’
later in this section), and numerous individuals have studied it.'*'® As shown in
Fig. 8.3d, the input samples are quantized to 0 or 1, depending on whether or not
they are less than a threshold 7,. The last N zeros and ones are summed and
compared with a second threshold T, = M. For large N, the detection perfor-
mance of this detector is approximately 2 dB less than the moving-window inte-
grator because of the hard limiting of the data, and the angular estimation error is
about 25 percent greater than the Cramer-Rao lower bound. Schwartz'® showed
that within 0.2 dB the optimal value of M for maximum P, is given by

M= 1.5VN (8.14)

when 107'° < P,, < 107% and 0.5 < P}, < 0.9. The optimal value of P, the prob-
ability of exceeding T, when only noise is present, was calculated by Dillard'®
and is shown in Fig. 8.8. The corresponding threshold T, is

T, = o(=2 1n Py)” (8.15)

A comparison of the optimal (best value of M) binary integrator with various
other procedures is given in Figs. 8.9 and 8.10 for P, = 0.5 and 0.9, respectively.

The binary integrator is used in many radars because (1) it is easily imple-
mented, (2) it ignores interference spikes which cause trouble with integrators
that directly use signal amplitude, and (3) it works extremely well when the noise
has a non-Rayleigh density.’® For N = 3, comparison of the optimal binary inte-
grator (3 out of 3), another binary integration (2 out of 3), and the moving-window
detector in log-normal interference (an example of a non-Rayleigh density) is
shown in Fig. 8.11. The optimal binary integrator is much better than the moving-
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FIG. 8.8 Optimum values of P,, as a function of the sample size n and the proba-
bility of false alarm a; Ricean distribution with S/N = 0 dB per pulse. (Copyright
1967, IEEE; from Ref. 18.)

window integrator. The optimal values for log-normal interference were calcu-
lated by Schleher'® and are M = 3, 8, and 25 and N = 3, 10, and 30, respectively.

A modified version of binary integration is sometimes used when there is a
large number of pulses. It also has flexibility to integrate a different number of
pulses. The modified binary moving window (MBMW) differs from the ordinary
binary moving window (OBMW) by the introduction of a third threshold. When
the second threshold is reached, one counts the number of consecutive pulses for
which the second threshold is exceeded. When this number equals the third
threshold, a target is declared. The performance of the MBMW and a comparison
with the OBMW were given in Ref. 20. The major conclusion to be drawn is that
the larger the value of N, the larger the difference in performance between the
MBMW and OBMW detectors. For instance, with respect to the OBMW, the
MBMVW incurs losses of 0.15, 0.53, 1.80, and 2.45 dB for N = 8, 16, 24, and 32
pulses, respectively.

Batch Processor. The batch processor (Fig. 8.3¢) is very useful when a large
number of pulses are in the 3-dB beamwidth. If KN pulses are in the 3-dB
beamwidth, K pulses are summed (batched) and either a 0 or a 1 is declared, de-
pending on whether or not the batch is less than a threshold T,. The last N zeros
and ones are summed and compared with a second threshold M. An alternative
version of this detector is to put the batches through a moving-window detector.

The batch processor, like the binary integrator, is easily implemented, ignores
interference spikes, and works extremely well when the noise has a non-Rayleigh
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FIG. 8.11 Comparison of various detectors in log-normal (o = 6 dB) in-
terference (N = 3; P, = 1079). (Copyright 1975, IEEE; after Ref. 19.)

density. Furthermore, the batch processor requires less storage, detects better,
and estimates angles more accurately than the binary integrator. For instance, if
there were 80 pulses on target, one could batch 16 pulses, quantize this result to
aOor al, and declare a target with a 3-out-of-5 (or 2-out-of-5) binary integrator.
With an 8-bit analog-to-digital converter, the storage requirement per range cell is
17 bits (12 bits for the batch and 5 for the binary integrator) for the batch proces-
sor as opposed to 80 bits for the binary integrator and 640 bits for the moving
window. The detection performance of the batch processor for a large number of
pulses integrated is approximately 0.5 dB worse than the moving window. The
batch processor has been successfully implemented by the Applied Physics
LaborAatory21 of Johns Hopkins University. To obtain an accurate azimuth esti-
mate 6, approximately 20 percent greater than the lower bound,

_23,'9,'

0 2B;

(8.16)

is used, where B, is the batch amplitude and 0, is the azimuth angle corresponding
to the center of the batch.

False-Alarm Control. In the presence of clutter, if fixed thresholds are used
with the previously discussed integrators, an enormous number of detections
will occur and will saturate and disrupt the tracking computer associated with
the radar system. Four important facts should be noted:

¢ A tracking system should be associated with the automatic detection system
(the only exception is when one displays multiple scans of detections).

* The P, of the detector should be as high as possible without saturating the
tracking computer.
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¢ Random false alarms and unwanted targets (e.g., stationary targets) are not a
problem if they are removed by the tracking computer.

¢ Scan-to-scan processing can be used to remove stationary point clutter or
moving-target indication (MTI) clutter residues.

One can limit the number of false alarms with a fixed-threshold system by setting
a very high threshold. Unfortunately, this would reduce target sensitivity in re-
gions of low noise (clutter) return. Three main approaches—adaptive threshold,
nonparametric detectors, and clutter maps-—have been used to reduce the false-
alarm problem. Adaptive thresholding and nonparametric detectors assume that
the samples in the range cells surrounding the test cell (called reference cells) are
independent and identically distributed. Furthermore, it is usually assumed that
the time samples are independent. Both kinds of detectors test whether the test
cell has a return sufficiently larger than the reference cells. Clutter maps allow
variation in space, but the clutter must be stationary over several (typically 5 to
10) scans. Clutter maps store an average background level for each range-
azimuth cell. A target is then declared in a range-azimuth cell if the new value
exceeds the average background level by a specified amount.

Adaptive Thresholding. The basic assumption of the adaptive thresholding
technique is that the probability density of the noise is known except for a few
unknown parameters. The surrounding reference cells are then used to estimate
the unknown parameters, and a threshold based on the estimated parameters is
obtained. The simplest adaptive detector, shown in Fig. 8.12, is the cell-
averaging CFAR (constant false-alarm rate) investigated by Finn and Johnson.??
If the noise has a Rayleigh density, p(x) = x exp (—x*/20?)/c?, only the parameter
o (o7 is the noise power) needs to be estimated, and the threshold is of the form
T = K3x; = KnV7/26, where ¢ is the estimate of o. However, since T is set by
an estimate &, it has some error and must be slightly larger than the threshold that
one would use if o were known exactly a priori. The raised threshold causes a
loss in target sensitivity and is referred to as a CFAR loss. This loss has been
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FIG. 8.12 Cell-averaging CFAR. The letter C indicates a comparison. (From Ref. 7.)
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TABLE 8.1 CFAR Loss for P, = 107 and P, = 0.9*

Number Loss for various numbers of reference cells, dB
of pulses
integrated i 2 3 5 10 *
1 AN 15.3 7.7 3.5 0
3 . 7.8 5.1 3.1 1.4 0
10 6.3 3.3 2.2 1.3 0.7 0
30 3.6 2.0 1.4 1.0 0.5 0
100 2.4 1.4 1.0 0.6 0.3 0

*After Ref. 23.

calculated®® and is summarized in Table 8.1. As can be seen, for a small number
of reference cells the loss is large because of the poor estimate of ¢. Conse-
quently, one would prefer to use a large number of reference cells. However, if
one does this, the homogeneity assumption (i.e., all the reference cells are sta-
tistically similar) might be violated. A good rule of thumb is to use enough refer-
ence cells so that the CFAR loss is below 1 dB and at the same time not let the
reference cells extend beyond 1 nmi on either side of the test cell. For a particular
radar this might not be feasible.

If there is uncertainty about whether or not the noise is Rayleigh-distributed, it is
better to threshold individual pulses and use a binary integrator as shown in Fig.
8.13. This detector is tolerant of variations in the noise density because by setting K
to yield a 1 with probability 0.1, a P, =~ 107¢ can be obtained by using a 7-out-of-9
detector. While noise may be non-Rayleigh, it will probably be very Rayleigh-like
out to the tenth percentile. Furthermore, one can use feedback based on several
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FIG. 8.13 Implementation of a binary integrator. The letter C indicates a comparison.
(From Ref. 7.)
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scans of data to control K in order to maintain a desired Py, either on a scan or a
sector basis. This demonstrates a general rule: to maintain a low Py, in various en-
vironments, adaptive thresholding should be placed in front of the integrator.

If the noise power varies from pulse to pulse (as it would in jamming when
frequency agility is employed), one must CFAR each pulse and then integrate.
While the binary integrator performs this type of CFAR action, analysis?*% has
shown that the ratio detector in Fig. 8.14 is a better detector. The ratio detector
sums signal-to-noise ratios and is specified by

n 2y
2 — xi U) 8.17)
T > [x2G+1+k) + x2(j=1-k)]

where x(j) is the ith envelope-detected pulse in the jth range cell and 2m is the
number of reference cells. The denominator is the maximum-likelihood estimate
of a2, the noise power per pulse. It will detect targets even though only a few
returned pulses have a high signal-to-noise ratio. Unfortunately, this will also
cause the ratio detector to declare false alarms in the presence of narrow-pulse
interference. To reduce the number of false alarms when narrow-pulse interfer-
ence is present, the individual power ratios can be soft-limited®® to a small
enough value so that interference will cause only a few false alarms. A compar-
ison of the ratio detector with other commonly used detectors is shown in Figs.
8.15 and 8.16 for nonfluctuating and fluctuating targets. A typical performance in
sidelobe jamming when the jamming level varies by 20 dB per pulse is shown in
Fig. 8.17. By employing a second test to identify the presence of narrow-pulse
interference, a detection performance approximately halfway between the limit-
ing and nonlimiting ratio detectors can be obtained.

MOVING
WINDOW

SQUARE-LAW
DETECTOR

FIG. 8.14 Ratio detector. (From Ref. 7.)

“If the noise samples are dependent in time or have a non-Rayleigh density
such as the chi-square density or log-normal density, it is necessary to estimate
two parameters and the adaptive detector is more complicated. Usually several
pulses are integrated so that one can assume the integrated output has a gaussian
probability density. Then the two parameters that must be estimated are the
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FIG. 8.15 Curves of probability of detection versus signal-to-noise ratio per pulse for
the cell-averaging CFAR, ratio detectors, log integrator, and binary: integrator:
nonfluctuating target, N = 6, and probability of false alarm = 1075, (From Ref. 25.)
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FIG. 8.16 Curves of probability of detection versus signal-to-noise ratio for the cell-
averaging CFAR, ratio detectors, log integrator, and binary integrator: Rayleigh, pulse-
to-pulse fluctuating target, N = 6, and probability of false alarm = 1075, (From Ref. 25.)

mean and the variance, and a threshold of the form T = . + Ko is used. Though
the mean is easily obtained in hardware, the usual estimate of the standard devi-

ation
. [1 va
G = [NZ(xi - x)z] 8.18)

where x= lz X; (8.19)
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FIG. 8.17 Curves of probability of detection versus signal-to-noise ratio for the cell-
averaging CFAR, ratio detectors, log integrator, and binary integrator: Rayleigh, pulse-
to-pulse fluctuations, probability of false alarm = 107, and maximum jamming-to-noise
ratio = 20 dB. (From Ref. 25.)

is more difficult to implement. Consequently, the mean deviate defined by

o = ASIx;—%l (8.20)

is sometimes used because of its ease of implementation. Nothing can be done to the
binary integrator to yield a low Py, if the noise samples are correlated. Thus, it
should not be used in this situation. However, if the correlation time is less than a
batching interval, the batch processor will yield a low P, without modifications.

Target Suppression. Target suppression is the loss in detectability caused by
other targets or clutter residues in the reference cells. Basically, there are two
approaches to solving this problem: (1) remove large returns from the calculation
of the threshold,?*? or (2) diminish the effects of large returns by either limiting
or using log video. The technique that should be used is a function of the partic-
ular radar system and its environment.

Rickard and Dillard®” proposed a class of detectors D, where the K largest
samples are censored (removed) from the reference cells. A comparison of D, (no
censoring) with D, and D, for a Swerling 2 target and a single square-law detected
pulse is shown in Fig. 8.18, where N is the number of reference cells, B is the
ratio of the power of the interfering target to the target in the test cell, and the
bracketed pair (n, n) indicates the Swerling models of the target and the inter-
fering target, respectively. As shown in Fig. 8.18, when one has an interfering
target, the P, does not approach 1 as S/N increases. Another approach®® which
censors samples in the reference cell if they exceed a threshold is briefly dis-
cussed in the subsection ‘‘Nonparametric Detectors.”’

Finn®® investigated the problem of the reference cells spanning two continuous
different “‘noise” fields (e.g., thermal noise, sea clutter, land clutter, etc.). On the
basis of the samples, he estimated the statistical parameters of the two noise fields
and the separation point between them. Then, only those reference cells which are in
the noise field containing the test cell are used to calculate the adaptive threshold.
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FIG. 8.18 Detection probability versus SNR for Swerling Case 2 primary target. (Copy-
right 1977, IEEE; from Ref. 27.)

An alternative approach for interfering targets is to use log video. By taking the
log, large samples in the reference cells will have little effect on the threshold. The
loss associated with using log video is 0.5 dB for 10 pulses integrated and 1.0 dB for
100 pulses integrated.?’ An implementation of the log CFAR?® is shown in Fig. 8.19.
In many systems the antilog shown in Fig. 8.19 is not taken. To maintain the same
CFAR loss as for linear video, the number of reference cell M, for the log CFAR

should equal

where My, is the number of reference cells for linear video. The effect of target

Mlog = 1.65 Mlin - 0.65

8.21)

suppression with log video is discussed later in this section (Table 8.2).
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FIG. 8.19 Block diagram of cell-averaging log-CFAR receiver. (Copyright 1972,

IEEE; from Ref. 30.)
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Nonparametric Detectors. Usually nonparametric detectors obtain CFAR by
ranking the test sample with the reference cells.?!**? Ranking means that one or-
ders the samples from the smallest to the largest and replaces the smallest with
rank 0, the next smallest with rank 1,..., and the largest with rank n—1. Under
the hypothesis that all the samples are independent samples from an unknown
density function, the test sample has equal probability of taking on any of the n
values. For instance, referring to the ranker in Fig. 8.20, the test cell is compared
with 15 of its neighbors. Since in the set of 16 samples, the test sample has equal
probability of being the smallest sample (or equivalently any other rank), the
probability that the test sample takes on values 0, 1,..., 15 is 1:16. A simple rank
detector is constructed by comparing the rank with a threshold K and generating
a 1 if the rank is larger, a 0 otherwise. The 0s and 1s are summed in a moving
window. This detector incurs a CFAR loss of about 2 dB but achieves a fixed P,
for any unknown noise density as long as the time samples are independent. This
detector was incorporated into the ARTS-3A postprocessor used in conjunction
with the Federal Aviation Administration airport surveillance radar (ASR). The
major shortcoming of this detector is that it is fairly susceptible to target suppres-
sion (e.g., if a large target is in the reference cells, the test cell cannot receive the
highest ranks).

If the time samples are correlated, the rank detector will not yield CFAR. A mod-
ified rank detector, called the modified generalized sign test (MGST),?¢ maintains a
low Py, and is shown in Fig. 8.21. This detector can be divided into three parts: a
ranker, an integrator (in this case a two-pole filter), and a threshold (decision pro-
cess). A target is declared when the integrated output exceeds two thresholds. The
first threshold is fixed (equals . + T,/K in Fig. 8.21) and yields P;,=10"° when the
reference cells are independent and identically distributed. The second threshold is

DIGITAL
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R
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S (0,1 MOVING |
WINDOW

K

FIG. 8.20 Rank detector: output of a comparator C is either a zero or a
one. (From Ref. 7.)
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adaptive and maintains a low P, when the reference samples are correlated. The
device estimates the standard deviation of the correlated samples with the mean de-
viate estimator, where extraneous targets in the reference cells have been excluded
from the estimate by use of a preliminary threshold T,.

The rank and MGST detectors are basically two-sample detectors. They decide
that a target is present if the ranks of the test cell are significantly greater than the
ranks of the reference cells. Target suppression occurs at all interfaces (e.g., land,
sea) where the homogeneity assumption is violated. However, some tests exist, such
as the Spearman Rho and Kendall Tau tests,** that depend only on the test cell.
These tests use the fact that as the antenna beam sweeps by a point target, the signal
return increases and then decreases. Thus, for the test cell the ranks should follow a
pattern, first increasing and then decreasing. Although these detectors do not require
reference cells and hence have the useful property of not requiring homogeneity,
they are not generally used because of the large CFAR loss that occurs for moderate
sample sizes. For instance, the CFAR losses are approximately 10 dB for 16 pulses
on target and 6 dB for 32 pulses on target.?

The basic disadvantages of all nonparametric detectors are that (1) they have
relatively large CFAR losses, (2) they have problems with correlated samples,
and (3) one loses amplitude information, which can be a very important dis-
criminant between target and clutter.>* For example, a large return (o # 1000 m?)
in a clutter area is probably just clutter breakthrough. See ‘‘Contact Entry
Logic”’ in Sec. 8.3.

Clutter Mapping. A clutter map uses adaptive thresholding where the
threshold is calculated from the return in the test cell on previous scans rather
than from the surrounding reference cells on the same scan. This technique has
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TWO-POLE INTEGRATOR
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K \\9

FIG. 8.21 Modified generalized sign test processor. (Copyright 1974, IEEE; from Ref. 26.)
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the advantage that for essentially stationary environments (e.g., land-based radar
against ground clutter), the radar has interclutter visibility—it can see between large
clutter returns. Lincoln Laboratory?® in its moving-target detector (MTD) used a
clutter map for the zero-doppler filter very effectively. The decision threshold T for
the ith cell is

T=AS_ (8.22)

where S;i=KSi_1 +X; 8.23)

S; is the average background level, X; is the return in the ith cell, X is the feed-
back value which determines the map time constant, and A is the constant which
determines the false-alarm rate. In the MTD used for ASR application X is 7:8,
which effectively averages the last eight scans. The main utility of clutter maps is
with fixed-frequency land-based radars. While clutter maps can be used with
frequency-agile radars and on moving platforms, they are not nearly as effective
in these environments.

Target Resolution. In automatic detection systems, a single large target will
probably be detected many times, e.g., in adjacent range cells, azimuth beams,
and elevation beams. Therefore, automatic detection systems have algorithms
for merging the individual detections into a single centroided detection. Most
algorithms have been designed so that they will rarely split a single target into
two targets. This procedure results in poor range resolution capability. A
merging algorithm®® often used is the adjacent-detection merging algorithm,
which decides whether a new detection is adjacent to any of the previously
determined sets of adjacent detections. If the new detection is adjacent to any
detection in the set of adjacent detections, it is added to the set. Two detec-
tions are adjacent if two of their three parameters (range, azimuth, and
elevation) are the same and the other parameter differs by the resolution
element: range cell AR, azimuth beamwidth 0, or elevation beamwidth +.

A simulation®® was run to compare the resolving capability of three common
detection procedures: linear detector with T = ji + Ag, linear detector with
T = Bji, and log detector with T = C + [i. The constants A, B, and C are used to
obtain the same Py, for all detectors. The estimates | and & of p and o were ob-
tained from either (1) all the reference cells or (2) the leading or lagging half of the
reference cells, choosing the half with the lower mean value. The simulation in-
volved two targets separated by 1.5, 2.0, 2.5, or 3.0 range cells and a third target
7.0 range cells from the first target. When the two closely spaced targets were
well separated, either 2.5 or 3.0 range cells apart, the probability of detecting
both targets (Pp,) was < 0.05 for the linear detector with T = ji + Agc; 0.15 <
Py, < 0.75 for the linear detector with T = Bji; and Pp, > 0.9 for the log detec-
tor. A second simulation, involving only two targets, investigated the effect of
target suppression on log video, and the results are summarized in Table 8.2. One
notes an improved performance for small S/N (10 to 13 dB) when one calculates
the threshold using only the half of the reference cells with the lower mean value.
The resolution capability of the log detector which uses only the half of the ref-
erence cells with the lower mean is shown in Fig. 8.22. The probability of resolv-
ing two equal-amplitude targets does not rise above 0.9 until they are separated in
range by 2.5 pulse widths.

By assuming that the target is small with respect to the pulse width and that
the pulse shape is known, the resolution capability can be improved by fitting
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TABLE 8.2 Probability of Detecting with Log Video Two Targets Separated by 1.5,
2.0, 2.5, or 3.0 Range Cells*

S/N of target no. 2

Thresholding Target
technique separation 10 13 20 30 40

All reference 1.5 0.0 0.04 0.0 0.00 0.00
cells 2.0 00 022 054 014  0.10
2.5 0.04 0.24 0.94 0.62 0.32
3.0 0.0 0.24 0.88 0.92 0.76
Reference cells 1.5 0.0 0.0 0.00 0.0 0.02
with minimum 2.0 0.10 0.32 0.44 0.12 0.04
mean value 2.5 0.18 0.58 0.98 0.46 0.28
3.0 0.22 0.66 0.98 0.82 0.74

*S/N of target 1is 20 dB. S/N of target 2 is 10, 13, 20, 30, or 40 dB. After Ref. 36.

the known pulse shape to the received data and comparing the residue square
error with a threshold.?” If only one target is present, the residue should be
only noise and hence should be small. If two or more targets are present, the
residue will contain signal from the remaining targets and should be large. The
results of resolving two targets with S/N = 20 dB are shown in Fig. 8.23.
These targets can be resolved at a resolution probability of 0.9 at separations
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FIG. 8.22 Resolution capability of a log detector which uses the half of the reference cells
with the lower mean. (Copyright 1978, IEEE; from Ref. 36.)
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varying between one-fourth and three-fourths of a pulse width, depending on
the relative phase difference between the two targets. Furthermore, this result
can be improved further by processing multiple puises.
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FIG. 8.23 Probability of resolution as a function of range separation: sampling rate AR = 1.5
samples per pulse width; target strengths—nonfluctuating, A, = A, = 20 dB; phase
differences = 0°, 45°, 90°, 135°, and 180°. (Copyright 1984, IEEE; from Ref. 37.)

Detection Summary. When only 2 to 4 samples (pulses) are available, a
binary integrator should be used to avoid false alarms due to interference.
When a moderate number of puises (5 to 16) are available, a binary integrator,
a rank detector, or a moving-window integrator should be used. If the number
of pulses is large (greater than 20), a batch processor or a two-pole filter should
be used. If the samples are independent, a one-parameter (mean) threshold can
be used. If the samples are dependent, one can either use a two-parameter
(mean and variance) threshold or adapt a one-parameter threshold on a sector
basis. These rules should serve only as a general guideline. It is highly
recommended that before a detector is chosen the radar video from the
environment of interest be collected and analyzed and that various detection
processes be simulated on a computer and tested against the recorded data.

8.3 AUTOMATIC TRACKING

Track-while-scan (TWS) systems are tracking systems for surveillance radars
whose nominal scan time (revisit time) is from 4 to 12 s for aircraft targets. If the
probability of detection (Pp) per scan is high, if accurate target location measure-
ments are made, if the target density is low, and if there are only a few false
alarms, the design of the correlation logic (i.e., associating detections with
tracks) and tracking filter (i.e., filter for smoothing and predicting track positions)
is straightforward. However, in a realistic radar environment these assumptions
are seldom valid, and the design of the automatic tracking system is complicated.
In actual situations one encounters target fades (changes in signal strength due to
muitipath propagation, blind speeds, and atmospheric conditions), false alarms
(due to noise, clutter, interference, and jamming), and poor radar parameter es-
timates (due to noise, unstabilized antennas, unresolved targets, target splits,





